Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34639085

RESUMO

In recent decades, neurogenesis in the adult brain has been well demonstrated in a number of animal species, including humans. Interestingly, work with rodents has shown that adult neurogenesis in the dentate gyrus (DG) of the hippocampus is vital for some cognitive aspects, as increasing neurogenesis improves memory, while its disruption triggers the opposite effect. Adult neurogenesis declines with age and has been suggested to play a role in impaired progressive learning and memory loss seen in Alzheimer's disease (AD). Therefore, therapeutic strategies designed to boost adult hippocampal neurogenesis may be beneficial for the treatment of AD. The precursor forms of neurotrophins, such as pro-NGF, display remarkable increase during AD in the hippocampus and entorhinal cortex. In contrast to mature NGF, pro-NGF exerts adverse functions in survival, proliferation, and differentiation. Hence, we hypothesized that pro-NGF and its p75 neurotrophin receptor (p75NTR) contribute to disrupting adult hippocampal neurogenesis during AD. To test this hypothesis, in this study, we took advantage of the availability of mouse models of AD (APP/PS1), which display memory impairment, and AD human samples to address the role of pro-NGF/p75NTR signaling in different aspects of adult neurogenesis. First, we observed that DG doublecortin (DCX) + progenitors express p75NTR both, in healthy humans and control animals, although the percentage of DCX+ cells are significantly reduced in AD. Interestingly, the expression of p75NTR in these progenitors is significantly decreased in AD conditions compared to controls. In order to assess the contribution of the pro-NGF/p75NTR pathway to the memory deficits of APP/PS1 mice, we injected pro-NGF neutralizing antibodies (anti-proNGF) into the DG of control and APP/PS1 mice and animals are subjected to a Morris water maze test. Intriguingly, we observed that anti-pro-NGF significantly restored memory performance of APP/PS1 animals and significantly increase the percentage of DCX+ progenitors in the DG region of these animals. In summary, our results suggest that pro-NGF is involved in disrupting spatial memory in AD, at least in part by blocking adult neurogenesis. Moreover, we propose that adult neurogenesis alteration should be taken into consideration for better understanding of AD pathology. Additionally, we provide a new molecular entry point (pro-NGF/p75NTR signaling) as a promising therapeutic target in AD.


Assuntos
Doença de Alzheimer/complicações , Encéfalo/patologia , Transtornos da Memória/patologia , Fator de Crescimento Neural/metabolismo , Neurogênese , Neurônios/patologia , Precursores de Proteínas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Proteína Duplacortina , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Fator de Crescimento Neural/genética , Neurônios/metabolismo , Precursores de Proteínas/genética , Memória Espacial , Adulto Jovem
2.
J Neurosci ; 41(35): 7350-7362, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301831

RESUMO

Neuron migration is a hallmark of nervous system development that allows gathering of neurons from different origins for assembling of functional neuronal circuits. Cortical inhibitory interneurons arise in the ventral telencephalon and migrate tangentially forming three transient migratory streams in the cortex before reaching the final laminar destination. Although migration defects lead to the disruption of inhibitory circuits and are linked to aspects of psychiatric disorders such as autism and schizophrenia, the molecular mechanisms controlling cortical interneuron development and final layer positioning are incompletely understood. Here, we show that mouse embryos with a double deletion of FLRT2 and FLRT3 genes encoding cell adhesion molecules exhibit an abnormal distribution of interneurons within the streams during development, which in turn, affect the layering of somatostatin+ interneurons postnatally. Mechanistically, FLRT2 and FLRT3 proteins act in a noncell-autonomous manner, possibly through a repulsive mechanism. In support of such a conclusion, double knockouts deficient in the repulsive receptors for FLRTs, Unc5B and Unc5D, also display interneuron defects during development, similar to the FLRT2/FLRT3 mutants. Moreover, FLRT proteins are chemorepellent ligands for developing interneurons in vitro, an effect that is in part dependent on FLRT-Unc5 interaction. Together, we propose that FLRTs act through Unc5 receptors to control cortical interneuron distribution in a mechanism that involves cell repulsion.SIGNIFICANCE STATEMENT Disruption of inhibitory cortical circuits is responsible for some aspects of psychiatric disorders such as schizophrenia or autism. These defects include interneuron migration during development. A crucial step during this process is the formation of three transient migratory streams within the developing cortex that determine the timing of interneuron final positioning and the formation of functional cortical circuits in the adult. We report that FLRT proteins are required for the proper distribution of interneurons within the cortical migratory streams and for the final laminar allocation in the postnatal cortex. These results expand the multifunctional role of FLRTs during nervous system development in addition to the role of FLRTs in axon guidance and the migration of excitatory cortical neurons.


Assuntos
Córtex Cerebral/citologia , Interneurônios/citologia , Glicoproteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Animais , Adesão Celular , Movimento Celular/fisiologia , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Cruzamentos Genéticos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Masculino , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Receptores de Netrina/fisiologia , Organogênese , Mapeamento de Interação de Proteínas , Receptores de Superfície Celular/fisiologia
3.
J Neurochem ; 158(2): 197-216, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33576044

RESUMO

The forebrain includes the cerebral cortex, the thalamus, and the striatum and globus pallidus (GP) in the subpallium. The formation of these structures and their interconnections by specific axonal tracts take place in a precise and orchestrated time and spatial-dependent manner during development. However, the knowledge of the molecular and cellular mechanisms that are involved is rather limited. Moreover, while many extracellular cues and specific receptors have been shown to play a role in different aspects of nervous system development, including neuron migration and axon guidance, examples of intracellular signaling effectors involved in these processes are sparse. In the present work, we have shown that the atypical RhoGTPase, Rnd3, is expressed very early during brain development and keeps a dynamic expression in several brain regions including the cortex, the thalamus, and the subpallium. By using a gene-trap allele (Rnd3gt ) and immunological techniques, we have shown that Rnd3gt/gt embryos display severe defects in striatal and thalamocortical axonal projections (SAs and TCAs, respectively) and defects in GP formation already at early stages. Surprisingly, the corridor, an important intermediate target for TCAs is still present in these mutants. Mechanistically, a conditional genetic deletion approach revealed that Rnd3 is primarily required for the normal development of Medial Ganglionic Eminence-derived structures, such as the GP, and therefore acts non-cell autonomously in SAs and TCAs. In conclusion, we have demonstrated the important role of Rnd3 as an early regulator of subpallium development in vivo and revealed new insights about SAs and TCAs development.


Assuntos
Globo Pálido/anormalidades , Cápsula Interna/anormalidades , Proteínas rho de Ligação ao GTP/genética , Animais , Axônios/patologia , Encéfalo/crescimento & desenvolvimento , Química Encefálica/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Eminência Mediana/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neostriado/anormalidades , Vias Neurais/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...